A Weak Convergence Theorem for Total Asymptotically Pseudocontractive Mappings in Hilbert Spaces

نویسندگان

  • Xiaolong Qin
  • Sun Young Cho
  • Shin Min Kang
  • Yeol J. Cho
چکیده

Throughout this paper, we always assume thatH is a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖. → and ⇀ are denoted by strong convergence and weak convergence, respectively. Let C be a nonempty closed convex subset ofH and T : C → C a mapping. In this paper, we denote the fixed point set of T by F T . T is said to be a contraction if there exists a constant α ∈ 0, 1 such that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

Convergence of the Explicit Iteration Method for Strictly Asymptotically Pseudocontractive Mappings in the Intermediate Sense

In this paper, we establish a weak convergence theorem and some strong convergence theorems of an explicit iteration process for a finite family of strictly asymptotically pseudo-contractive mappings in the intermediate sense and also establish a strong convergence theorem by a new hybrid method for above said iteration scheme and mappings in the setting of Hilbert spaces. AMS Mathematics Subje...

متن کامل

Strong convergence of approximated iterations for asymptotically pseudocontractive mappings

The asymptotically nonexpansive mappings have been introduced by Goebel and Kirk in 1972. Since then, a large number of authors have studied the weak and strong convergence problems of the iterative algorithms for such a class of mappings. It is well known that the asymptotically nonexpansive mappings is a proper subclass of the class of asymptotically pseudocontractive mappings. In the present...

متن کامل

Implicit iteration approximation for a‎ ‎finite family of asymptotically quasi-pseudocontractive type‎ ‎mappings

In this paper‎, ‎strong convergence theorems of Ishikawa type implicit iteration‎ ‎process with errors for a finite family of asymptotically‎ ‎nonexpansive in the intermediate sense and asymptotically‎ ‎quasi-pseudocontractive type mappings in normed linear spaces are‎ ‎established by using a new analytical method‎, ‎which essentially‎ ‎improve and extend some recent results obtained by Yang‎ ‎...

متن کامل

CONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE FOR THE MODIFIED NOOR ITERATIVE SCHEME

We study the convergence of the modified Noor iterative scheme for the class of asymptotically pseudocontractive mappings in the intermediate sense which is not necessarily Lipschitzian. Our results improves, extends and unifies the results of Schu [23] and Qin {it et al.} [25].  

متن کامل

Convergence results‎: ‎A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces

‎In this article‎, ‎we introduce a new type iterative scheme for‎ ‎approximating common fixed points of two asymptotically‎ ‎nonexpansive mappings is defined‎, ‎and weak and strong convergence‎ ‎theorem are proved for the new iterative scheme in a uniformly‎ ‎convex Banach space‎. ‎The results obtained in this article‎ ‎represent an extension as well as refinement of previous known‎ ‎resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011